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Chapter 2

Bi-Maxwellian Analysis of
Wind/SWE Ion Spectra

ABSTRACT: A description of the Faraday Cup ion instruments on the Wind spacecraft.
Extension of existing analysis techniques to measure the bi-Mazwellian nature of ion
species. Evaluation of the analysis, comparison with other methods, instruments, and
spacecraft. A brief survey of the typical properties of solar wind protons.

2.1 Introduction

This chapter presents my analysis of data taken by the Faraday Cup (FC) instruments
which make up the ion portion of the Solar Wind Experiment (SWE) on the Wind
spacecraft [Ogilvie et al., 1995]. The data produced as a result of this analysis are
the basis for the research detailed in subsequent chapters of this thesis.

The goal of SWE/FC is to characterize the bulk properties of the major ions in
the solar wind, namely TH and *2He, but also THe in the rare situations in which it
is seen. The Faraday Cups probe the three-dimensional distribution of proton and
alpha particles in velocity space f,(?) and f,(¥) through measurements of the re-
duced distribution function (1.65). Most scientific investigations do not require this
detailed information about the ion properties. As shown in Section 1.2.6 and Sec-
tion 1.2.7, to first order we can describe the solar wind in as a fluid,with temperature
T, velocity U , and density n as a function of location and time. In theory calculating
these contracted properties of the distribution function follows the integrals listed in
Section 1.2.6. In practice the features of the instrument must be taken into account
in order to produce accurate values of these “key parameters”. In this chapter the
proton spectra are analyzed both through a detailed comparison of observations and a
model response function, which will be referred to as the non-linear analysis method,
and through a simplified moment routine, the moment analysis procedure, based on
the derivations in Section 1.2.6.

The primary data products which the Wind/SWE Faraday Cups produce are the
velocity, thermal speed, and density of the protons, along with the relative abundance
ratio of alpha particles to the protons. John Steinberg, currently at the Los Alamos
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National Laboratory, supervised the original key parameter analysis which produced
the proton velocity ‘7,,, thermal speed w, and density n,, and started the analysis of
helium [Steinberg et al., 1996]. The full alpha particle analysis was done by Matthias
Aellig, producing the alpha velocity, Va, thermal speed, w,, and number density n,,
[Aellig et al., 2001b]. T have extended our ability to characterize the ion spectra by
deriving an analytical expression for the response of a Faraday Cup to the convected,
field-aligned, bi-Maxwellian velocity distribution function described in Section 1.2.5.
Instead of the single thermal speed w), the parallel (w,) and perpendicular (wp)
thermal speeds are measured. This chapter describes this analysis of the Wind Fara-
day Cup proton spectra. In addition to the new response function I have introduced
a new method for determining the effective collecting area of the instrument, car-
ried out the first detailed analysis of the accuracy with which the Faraday Cup can
quantify the solar wind ions, and compared the results of the non-linear and moment
analysis techniques.

There are several reasons why we would like to measure anisotropies in the plasma
species seen by the WIND Faraday Cup:

e Based upon the y? merit function defined and discussed in Section 2.4.2, the bi-
Maxwellian velocity distribution function is a more accurate description of ion
species seen in the solar wind than a single isotropic Maxwellian VDF'. From the
simple point of view of conducting the best analysis of existing data as possible
we should make the extension to a two-temperature model.

e Plasma micro-instabilities should place limits on the maximum temperature
anisotropies allowed in the solar wind. Knowledge of these instabilities is of
interest to the general plasma community.

e The existence of anisotropies in the ion distributions may significantly alter the
results of certain analysis methods, for example in the study of collisionless
magnetohydrodynamic shocks.

e Recent results with data from the SOHO spacecraft [Antonucci et al., 2000;
Cranmer, 1999] suggest that extreme ion anisotropies exist in the solar corona.
Anisotropies observed in the solar wind may contain information about this
process and are therefore useful in the study of the corona and origin of the
solar wind.

Section 2.2 describes how the Faraday Cup works and then details the derivations
of FC response functions for a given velocity distribution function. The non-linear
analysis algorithm is outlined in Section 2.3. In Section 2.4 the uncertainties in each
of the derived parameters are explored.
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Figure 2-1: A simple cartoon showing how a Faraday Cup measures charged particle
fluxes. In (a) particles of various energies (energy o length of arrow) and different
charges (red,blue) are allowed to flow through an opening into a grounded metal
container. An insulated metal plate at the back of the cup collects the particles
and the total current is measured as these particles flow through the wire (green) to
ground. In (b) two metal grids have been inserted into the cup. The outer grid is
grounded and a voltage is applied to the inner grid to repel particles of the desired
charge.

2.2 Faraday Cup Measurements of Ion
Distribution Functions

The operating principles of a Faraday Cup are straightforward. In fact the FC is one of
the few instruments for which analytic expressions may be derived for the response to
a given ion distribution. Access to an analytic expression is a tremendous advantage
because it allows us to compare a model distribution function with the observations
and to vary the parameters of that model to produce the best agreement with the
observations. As a byproduct of that analysis, we also get estimates of the uncertainty
in each parameter. One of the themes of this thesis is that these uncertainties may
be propagated through to any derived quantity we wish to explore, which then allows
us to express a rigorous value for the statistical significance of any result.

The operational design of a Faraday Cup is outlined in Section 2.2.1, followed in
Section 2.2.2 by a description of a single ion spectrum measured by the two Fara-
day Cup (FC) instruments on Wind. In Section 2.2.3 the response of a FC to an
isotropic Maxwellian distribution function is derived. In Section 2.2.4 that response
is extended to a bi-Maxwellian VDF. As a second method for analyzing FC ion spec-
tra the moment analysis procedure is described in Section 2.2.6, and an algorithm for
determining temperature anisotropies with moments is detailed in Section 2.2.7. A
new method for calculating the correct effective collecting area of the FC due to the
transparency of the grids is presented in Section 2.2.5.

2.2.1 Operational Design of the Wind/SWE Faraday Cups

The basic principle of operation of a Faraday Cup ion instrument is to measure the
current produced by the flux of particles which pass through the instrument and
impact one or more electrically insulated collector plates. This processes is indi-
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cated schematically in Figure 2-1. In the left image particles of positive and negative
charges, ¢4, ¢_ (red and blue arrows) and varying speeds v parallel to the instrument
symmetry axis (proportional to the lengths of the arrows) pass through an entrance
with area A and impinge upon a collector plate which is insulated from the instru-
ment. Excess charge does not build up on the collector because it is grounded through
the green wire. As current flows through the wire it is measured by an ammeter. But
what is the relationship between the measured current and the VDF? If the VDF of
the particles are uniform across the entrance and their average speeds and densities
are U)y, U= and py4, p—, then the measured current is,

Imeas = q+p+ U+ + 44 p4 Uj - (2.1)

The problem with this configuration is that the properties of the positive and negative
particles are intertwined. Indeed, if they had the same average speeds and the plasma
were neutral overall then no current would be measured. An improvement to the
design is shown in the second image of Figure 2-1, in which two wire grids have been
inserted within the instrument, between the entrance and the collector plate. The
outer grid is grounded and a positive high voltage Vv, is applied to the inner grid
relative to the instrument. This has the effect of shielding the collector plate from
positively charged particles with insufficient energy to penetrate the region between
the grids. A particle of mass m and charge ¢ is reflected unless

lmvﬁ

2
q

> Vuv, (2.2)

which now allows the FC to probe the distribution of particles f(v)) as a function of
their speed normal to the grids by varying Vi .y, and recording [e.s. There are still
several aspects which need improvement. For example, photoelectrons produced by
ultraviolet rays from the sun illuminating the collector plates or secondary electrons
produced when a particle strikes the collector surface and subsequently escape could
generate additional currents which may overwhelm the real signal. Additionally in this
example the VDF of the particles which have sufficient energy to pass the high voltage
grid has been altered. Still, this does illuminate the the basic operating principles of
a Faraday Cup. Since (2.2) does not involve the phase space density’s dependence
upon speeds ¢, perpendicular to the cup axis, the FC measures a quantity related
to the reduced distribution function (1.65), as described in Section 1.2.6. The three-
dimensional characteristics of the VDF are then resolved by placing the instrument
on a rotating spacecraft. The first observations of ion fluxes in space were performed
using such a Faraday Cup, with a large, fixed negative voltage to prevent the entrance
of electrons into the detector [Gringauz et al., 1960]. The fixed voltage design is still
used today [Némecek et al., 1997; Santolik et al., 1997], mainly due to its simplicity
and ability to rapidly characterize the ions through single measurements of the flux,
resulting in measurements with a high cadence [Unti et al., 1973], but at the loss of
resolving the VDF.

Faraday Cups have been a workhorse for space plasma measurements for the du-

52



ration of in-situ space exploration [Vasylinuas, 1971; Gloeckler, 1990]. Over the last
four decades the MIT space plasma group has developed and extended the capabil-
ities of these instruments for exploring the heliosphere [Bridge et al., 1977; Gazis
et al., 1989], by reducing their mass and power requirements, [Lazarus et al., 1993],
increasing their cadence [Aellig et al., 2001a], and extracting additional information
from existing observations [Richardson, 1986; Kasper et al., 2001a,b].

Many improvements may be made to the basic design, and the Faraday Cups
flown on the Wind spacecraft reflect this. The design characteristics of the two
Faraday Cups of the Solar Wind Experiment (SWE) on the Wind satellite are shown
in Figure 2-2 There are a total of nine grids in the Wind Faraday Cups, each serving a
special purpose. Instead of the pair of grounded and high voltage grids in Figure 2-1, a
modulator assembly contains a high voltage grid surrounded by two ground grids. As
a result, any particle which manages to pass the high voltage grid is re-accelerated to
its original velocity by the time it leaves the assembly, eliminating any distortion of the
original VDF. A high-voltage power supply within the instrument applies a square-
wave voltage waveform to the grid at the center of the modulator. The square-wave
oscillates between two high voltages, V7 and V; at 200Hz, with (Vo — V;)/V; ~ 10%.
As shown in the figure there are three categories of particles for a given set of (17, V3):
those that always reach the collector plates, those that never reach the collector plates,
and those particles with parallel speeds V;/q < 1/ 2mvﬁ < V5, which only reach the
collector plates 1/2 of the time and produce a current which is modulated at 200 Hz.
The exact details of the conversion of this alternating current into a measurement
which is sent back down to Earth are detailed elsewhere [Ogilvie et al., 1995], but
the key is that only the modulated current is recorded. This eliminates the effects of
photoelectrons, solar wind electrons, and any other background signals. By stepping
through increasing voltages the VDF of ions may be scanned. Two outer ground grids
isolate the rest of the spacecraft from electromagnetic interference generated by the
oscillating electric fields, and three inner ground grids prevent the modulator from
inducing stray currents on the collector plates. A final grid, the suppressor grid, is
mounted right above the collector plates and is maintained at —100 volts, a sufficient
amount to drive any secondary electrons back into the collector plates.

Another feature of the Wind Faraday Cups is the combination of the limiting
aperture located immediately underneath the modulating assembly, and the fact that
the collecting surface at the back of the instrument has been divided into two equal
semi-circular plates. There is a small but treatable abberation of particles as they
travel through the modulator: since the electric field is perpendicular to the grids,
each particle maintains its velocity component parallel to the grids. Therefore as
it is slowed down and subsequently reaccelerated in the modulator it continues to
travel in the plane of the collectors. The net result is a translation of the beam of
particles which is a function of their energy (in an analytic treatment it ranges from
the geometrical projection at high energies to exactly twice that in the case that the
particles just make it through the modulator). The limiting aperture removes this
problem over a large range of angles because up to approximately 45° the aperture is
evenly illuminated. Thus a clean circular beam is projected onto the collector plates.
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Figure 2-2: An overview of the properties of the Faraday Cups on the Wind spacecraft
adapted from [Ogilvie et al., 1995]. Top: A cross-section of the instrument along its
symmetry axis, showing the entrance aperture, modulator assembly, limiting aper-
ture, suppressor grid, and collector plates. Bottom Left: A sketch of the operating
principle of the modulator assembly with the three categories of particles: those that
always do or do not make it past the high voltage grid, and those which only pass
through at one energy and produce a current which is modulated at 200 Hz. Bottom
Right: The effective collecting area as a function of angle of incidence, this figure
includes geometrical effects and the transparency of the wire grids.
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Figure 2-3: Illustration of the Faraday Cup coordinate system for the Wind instru-
ments. The two collector plates, A and B, lie in the z. — g. plane, with z, directed
along the split between the plates. The 2z, axis is normal to the collector plates.
In subsequent discussion the “cup orientation” 7n is the direction of Z. in the GSE
coordinate system.

Since the plates are split, it is then a simple matter to determine the flow angle of
the incoming particles based on the relative currents seen by each plate. This allows
each cup to individually determine the three dimensional properties of the solar wind
ions in the event that one instrument fails. For the purposes of this thesis we will
treat each FC as having a single collector plate and simply sum the two currents.

The plot in Figure 2-2 is of the effective collecting area of the instrument as a func-
tion of the angle of incidence. There are three factors which determine this. First the
size of the limiting aperture, which is about 33 cm?. Second there is the transparency
of the grids, which decreases very slowly from 0° to 40° but then falls off rapidly to
zero. The transparency is determined by the thickness of the wires used in the grids
and the average separation between wires. It can be calculated analytically and com-
pared with observations in a calibration beam on Earth. Finally at extreme angles,
greater than about 45°, the limiting aperture is no longer completely illuminated and
the response becomes much more difficult to describe analytically. Numerical sim-
ulations have however yielded corrections to the effective collecting area which have
been folded into the curve shown in Figure 2-2.

2.2.2 Description of a Single Wind/SWE Faraday Cup
Spectrum

Wind rotates once every three seconds, so the following derivations of the response of a

Faraday Cup to ion distributions will require transformations between the Geocentric

Solar Ecliptic (GSE) coordinate system (described in Section 1.3), and the frame of
the instrument. A sketch of the Faraday Cup coordinate system used in all of these
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derivations is shown in Figure 2-3. A transformation matrix that converts a vector in
GSE components VE to the frame normal to a Faraday cup on Wind, ‘70, is shown
below. Call the tilt angle of each cup out of the ecliptic £, and the azimuthal angle in
the ecliptic ¢. Define ¢ as zero along Zqsg and increasing towards ggsg. In component
form a vector transformed into the cup frame becomes

VE =Vsing + VyG oS ¢
Vyc = V% cos ¢sinf) — VyG sin ¢sin 0 + V. cos 0 (2.3)

Ve = V,,:Gcos¢c059—Vszin¢cosﬁ—Vstinﬁ

The positions of the instruments which comprise the Solar Wind Experiment,
including the two Faraday Cups, on the Wind spacecraft are shown in Figure 2-4.
The spin-axis of the spacecraft, labeled “Z” in the figure, is perpendicular to the
ecliptic plane of the solar system. The Faraday Cups are located 180° apart and look
+15° out of the spacecraft equatorial plane, with FC1 looking slightly northward and
FC2 southward. The line dividing the split collector plates also lies in the ecliptic
plane, so the relative current on each plate is related to the flow angle of the solar
wind out of that plane, or the “North-South” flow angle. This was done so that a
single cup could extract the three dimensional solar wind parameters in the event of
a failure.

Each instrument must know the azimuthal orientation of the spacecraft to a high
degree of accuracy. The exact period is therefore measured on board by a sun-pulse
sensor. The sensor is essentially a photodiode with a narrow field of view mounted on
the side of the spacecraft, and each time that side of Wind faces the Sun it generates
a pulse. A circuit tracks the average spin rate over several rotations and divides each
rotation into 1000 sub-intervals. Small variations in the temperature of the spacecraft
change its moment of inertia and thus alter the exact spin period.

A single ion spectrum consists of a set of measurements by the two cups of the
reduced distribution function along a series of angles and over consecutive energy
windows. Figure 2-5 is a diagram of the measurement sequence. A single spectrum
is taken as follows: When the cups are instructed by the SWE Digital Processing
Unit (DPU) to begin a spectral observation they wait until a signal is received by the
Sun-sensor and then start by performing an internal calibration run for one spacecraft
rotation. When the calibration is complete the high voltage power supplies on each
cup are enabled and begin modulating between the first pair of voltages. Based on the
timing signals from the Sun-pulse sensor the SWE DPU commands each of the two
Faraday cups to perform measurements of the current at the single energy window
along 20 angles. These angles may be modified through commands from the ground
at any time, but they have been kept in the same location since launch: 18 angles
spaced evenly at ~ 3.5° intervals in ¢ and two angles directed anti-Sunward, each
35° on either side of the —Zggsp axis. Upon completion of the spin each modulator
is commanded to the next higher voltage pair, and this process continues until the
highest energy window is processed.

The FC high voltage power supplies produce a square-wave waveform oscillating
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Figure 2-4: Configuration of the SWE instruments on the Wind spacecraft, adapted
from [Ogilvie et al., 1995]. The two Faraday Cup ion instruments are mounted +15°
out of the ecliptic plane, with the upper cup looking slightly northward, and the lower
cup downward. Also shown are the Vector Ion-Electron Spectrometers (VEIS), the
field-aligned electron Strahl detector, and the SWE DPU.
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Figure 2-5: Diagram indicating the measurement of a single ion spectrum. In each
single rotation the FC measures along each of the angles indicated by red arrows at
a single energy window indicated by the blue arrows.

between two voltages selected from a list {V;} of 64 voltages logarithmically spaced
from 200 V to 8 KV, with AV;/V; = (V41 —V;)/V; a constant 10%. A pair of voltages
defines an energy window. There are four modes that the instruments are run in,
based on the width and number of energy windows in a spectrum. Single energy
windows are bounded by the voltage pair (V;, V;11), double energy windows are twice
as large, with voltages (V;,V;42). The instrument may either conduct a full scan,
stepping from the lowest to the highest energy windows, or it may “peak-track”,
by only observing a subset of windows which bracket the window from the previous
observation which returned the highest current. In general the Wind cups operate
either in full-scan with double width energy windows or peak-track with single energy
windows. The net result is that there are almost always 30 total energy windows in
each spectrum.

A FC spectrum thus consists of 2400 measured currents I ,e.s as a function of the
orientation of the instrument (6, ¢) and the location of the energy window (V, AV),

2 instruments X 2 collectors x 20 angles x 30 windows = 2400 (2.4)

For this study the currents from the two collector plates in each cup are summed
together, so there are 1200 measurements in a spectrum. The goal is to extract
accurate and precise ion parameters from this set of currents. In the following two
sections I derive the expected currents from two model ion distribution functions,
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the Maxwellian and the bi-Maxwellian VDF. Once we have a relation for the model
current I,qe1 as a function of the model parameters and the instrument variables,

]model [07 ¢7 V;), AV, fmodel(ﬁ)]a (25)

we can determine the parameters which produce the best fit to the observations.
Section 2.2.6 describes an approximate method for extracting the same parameters
for protons by calculating the moments of the observed currents.

2.2.3 Response to an Isotropic Maxwellian Ion Distribution

First consider the current incident on a collector plate with area A in response to
an isotropic, convected Maxwellian plasma with charge ¢, number density n, bulk
velocity U and thermal width w. The collecting area A is a function of the size of
the limiting aperture, but it additionally reflects the transparency due to the wires of
the grids, so it is a function of the angle of incidence. During a single measurement,
the FC high voltage modulator alternates rapidly between two voltages. These two
voltages correspond to the minimum speeds, V, and V, + AV, that a particle must
have normal to the grids to pass through the modulator and impact the collector
plates. The instrument returns the difference in currents observed when the grids are
set to V, and V, +AV. We can do the same by integrating over the region of velocity
space which contributes to that final signal.

The differential amount of current d/ produced by a small element of plasma with
velocity ¥ in the frame of the FC (and speed v, = ¥+ 2. normal to the cup) is given
by

dI = A(T/v)qu. f(0)d*7, (2.6)

which is a more general form of the current seen by the simple FC (2.1).
Inserting the isotropic Maxwellian distribution (1.54), the total current produced
is obtained by integrating over the entire window,

Ang _@=0? o
fiso = 3/ 293 ///window ve A (27)

Now we have to make two assumptions in order to get an analytical result. These
are both justified because the typical ratio of the bulk speed of the ions in the frame
of the Faraday Cup to the thermal width of the distribution in the solar wind is
U/w ~ 10 — 20, so the ions appear from a 2° — 6° region of the sky. The validity of
this assumption is demonstrated in Figure 2-19 of Section 2.5 using the results of the
analysis.

e The effective area of the instrument does not have to be folded into the inte-
gration. Instead it can be pulled out of the integral and estimated by using the
angle from which the bulk of the particles contributing to the current measured
in this energy window were incident. The proper subsequent calculation of the
effective area is discussed in Section 2.2.5.
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e When examining the current produced by a region in phase space bounded in
the cup frame by V, : [V,,V, + AV,], particles in phase space with all possible
velocities perpendicular to the instrument symmetry axis contribute. In reality
there is a maximum possible angle of incidence into the FC, above which incom-
ing particles are blocked. We assume here that the FC measures the current
produced by an entire plane of thickness AV, in phase space.

Moving to the rest frame of the plasma by subtracting the bulk motion U of the
ions,

-, —

W=0-U—dW = d*7, (2.8)

simplifying the exponential term in (2.7). With the integrals in the . — g, frame
running from [—o0, co| the integral takes the form,

Vot+AVo—U,
Anq / / / W + U ) W2+W2+W2 )/ w? d3W (29)

3/23

The exponential may be broken into three parts, and the two integrations in W, and
W, carried out separately,

A Vot AVo—U: 2/, 2 o0 2 2
”q/ (W, + U,)e" W2 gy, [/ e~Weulaw, | (2.10)

3/2,3
32w fy _y ~

Using the standard relation for the full integral over a Gaussian distribution,

/ e~ @) dy = /T, (2.11)

only the integration over W, remains,

A Vo+AV, U,
\/ﬁq / (W, + U,)e~ M) aw,. (2.12)
W Jv,-uU.

This can be separated into two parts by breaking up the V, — U, sum and writing
two integrals,

Anq Vo+AVL—-U, s Vo+AVo—-U, s
NG [/ W,e=We/w >sz+Uz/ e~ (W /w )dWZ]. (2.13)
w O OiUZ

The integral on the left has an analytical solution because of the additional factor
of W, proceeding the exponential. The right integral does not, but its value may
be expressed using the definition of the error function erf, [Abramowitz and Stegun,
1972, 86,

exf(z) = f ' dt—l——/ (2.14)
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The solution is,

Vo+AVo—U.

+ Uzgerf

9 (‘/O‘FA‘/O*UZ)/'LU
Anq _’U) e—Wf/w2

T (2.15)

Vo—Uz (%—Uz)/w

After simplification we have the model current Iy, a Faraday Cup would observe due
to the presence of a convected, supersonic, isotropic Maxwellian particle VDF,

Lo = @ |:i (6_(V°_Uz)2/w2 — e_(VO‘l‘AVo—Uz)z/w2)
2 |7

(2.16)
+ U, (erf

Vo + AV, - U, Vo—Uz>]
—erf———

w w

This formula has been used historically for fitting Faraday Cup ion spectra. The
response functions derived here and in the following section are valid for any su-
personic VDF (|U|/w > 1), and they are used in Chapter 4 to characterize alpha
particles. The response is a function of the charge ¢ of the species in question, and
it is worth noting that an equal flux of ¥?He produces twice the current of protons.
This response is also a function of the mass of the particles, because the relationship
between the modulator voltages and the speeds corresponding to either limit of the
window are functions of the charge to mass ratio of the species, as can be seen in (2.2).
Thus observations of alphas and protons, which travel at approximately the same ve-
locity in the solar wind, appear at different voltages in FC spectra (see example (b)
in Figure 2-6).

2.2.4 Response to a Bi-Maxwellian Ion Distribution

Figure 2-6 has four examples of possible solar wind ion spectra. They are presented
in the raw form in which observations by the Faraday Cups are returned to Earth:
the observed current in a given energy window as a function of the energy per ion
charge at which the instrument was scanning. Panel (a) is a typical spectra seen in
the solar wind, with protons and alpha particles moving with approximately the same
speed. The alphas appear at a higher voltage due to their larger mass per charge.
The black histogram is the measured current and the blue and red curves are the
model responses for protons and alphas respectively which best fit the observations.

Panel (b) of Figure 2-6 shows two measurements of the same ion distribution,
but at two angles with respect to the ambient magnetic field. As we shall see this is
indicative of a bi-Maxwellian distribution. This chapter details my extension of the
analysis of Wind FC ion spectra by fitting the data with a model for the instrument
response to convected, bi-Maxwellian velocity distribution functions (1.58) described
in Section 1.2.5.

There are other departures from Maxwellian VDF's seen solar wind which will not
be examined in this thesis. In Panel (¢) the measured currents produced by protons
are shown along two angles with respect to the magnetic field, with the black curve
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Figure 2-6: A series of examples of ion distributions as a function of energy in the
solar wind. Shown are the raw currents recorded by a Faraday Cup on Wind as a
function of the center voltage E/q of the window. (a) Maxwellian protons and alpha
particles with approximately the same speed. The black histogram is the measured
current, while the red and blue curves are the calculated currents using the derived
instrument response function and the best-fit parameters; (b) A proton distribution
function viewed at two angles relative to the ambient magnetic field. The red curve is
from a measurement nearly along the magnetic field, while the blue curve was nearly
perpendicular to the fiele. This demonstrates a remarkable temperature anisotropy
with Tj, > T’ p; (c) Double double streaming: two separate, differentially streaming
Maxwellian proton distributions. The red and blue curves are the predicted currents
due to each of the proton distributions, and the green curve is the sum; (d) Protons
with a non-Maxwellian high energy tail, which is not fit well by the model response
function.
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corresponding to measurements made along the field direction. It can be seen that
in this case the proton distribution is actually composed of two, separate, possibly
bi-Maxwellian distributions. This phenomenum is called double-streaming, and it is
being investigated by Dorian Clack [Clack et al., 2001, 2002]. For example, panel (d)
demonstrates the directed heat flux Cj described in Section 1.2.6.

We are now ready to derive the Faraday Cup response to a convected, field-
aligned, bi-Maxwellian VDF. In addition to density and bulk velocity, there are now
two thermal speeds, w, and w), perpendicular and parallel to an ambient magnetic

field B,. The starting point is again an integration over the accessible energy window,
but with a bi-Maxwellian distribution (1.58),

2 2
Ang _<;})—_2L+w_£> 3
Tani = /28 ///Window ve \"t VI @By, (2.17)

where the collecting area has already been pulled out of the integral. In addition to
the thermal speeds we must take into account the alignment of the magnetic field.
The magnetic field must be transformed into the frame of the cup for each measure-
ment through (2.3). With the unit vector b = B,/B, defining the orientation of the
magnetic field seen by the cup, the integral has been simplified by the substitution

—

G=@-0)-b, w=@-U)—[@-0)-blb (2.18)

The two velocities 7, and 7 are the components of velocity in phase space in the rest
frame of the plasma perpendicular and parallel to the magnetic field. The dependence
on b will complicate the integration, but it is still manageable. With b in the frame
of the cup we expand ¢/, and @, using the same definition of W from the previous
section,

U = Wabed + Wybyg + W.b.2 (219)
vit = W2b% + Wby + Wb ‘

and,

U =Wy — by (Wyby + Wyb, + W,b,)| &
+ Wy — b, (Wb, + Wb, + W,b,)] 7 (2.20)
+ [W, — b, (Wyby + Wb, + W,b,)| 2

The magnitude of V. is

T T =(1 = YW2 4+ (1= )W + (1 — B)W?

(2.21)
— 2y by W Wy, — 2b,b, W, W, — 2b,b, W, W.,.

The additional assumption of this expansion is that B, in addition to the ion VDF,
does not vary over the course of the measurement. Substituting these expressions for
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v} and vjf back into (2.17), the integral takes the slightly longer form,

A Vo+AVe—U, 00 00
i/ sz/ dWI/ AW, (W, +U,) -

372, 2
w3/ wy W) Jv,-u,

Exp< — {(1 —DIW2+ (1 =)W+ (1= bW,

— 2b,b,W, W, — 2b,b,W, W, — 2bbeWyWZ] Jw? (2.22)
— [bgwﬁ + bW+ DWW + 20,b, W Wy + 20,0, W, W,

+ 2bybzwywz] /w2|> :

While the term in the exponential has a more complex form than the isotropic
Maxwellian case, the integration is still straightforward. The final result for the
current [,,; due to a supersonic convected bi-Maxwellian VDF is,

Tani _Ang {i (e’(v"*UzV/ﬁ’2 _ e*(Vo+AVrUZ)2/w2>

> |vr
+ U, <eerO+AYO_UZ —eerOjUz>], (2.23)

w w

where now there is an effective thermal speed w which is a function of the orientation
of the magnetic field with respect to the cup,

W= \/bgwﬁ + (02 +D2)w? = \/bgwﬁ + (1 = 02)w? (2.24)

By virtue of the fact that the Faraday Cup measures the reduced distribution function,
a bi-Maxwellian VDF looks exactly like an isotropic Maxwellian, with an effective
thermal speed determined through a simple projection. Note that w only depends
on the projection of the field parallel and perpendicular to the cup, and not on the
specifics of the field orientation in the cup’s z. — 9. plane. This result is due to our
approximation of the cup as having infinite response in velocity space perpendicular
to the collector plates and because we are summing the currents measured by the
individual plates in each cup.

We can make a few checks to verify that (2.23) holds under simplifying circum-
stances.

e Magnetic field points straight into the Faraday cup

In this case b, and b, are both zero, and the effective thermal speed reduces to
w = w), as expected.

e Magnetic field is aligned parallel to the collectors
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If bf: + bz =1, then there is no b, component and w reduces to w, .

e There is no anisotropy

We have w; = w; = w. Therefore

W= \/bguﬂ + (B2 4+ 02)w? = wy /B2 B2+ 52 = w (2.25)

2.2.5 Choice of Effective Collecting Area for bi-Maxwellian
Distribution

In the derivations of the Faraday Cup response functions to isotropic and anisotropic
Maxwellian distribution functions the effective area A was pulled out of the integral
over the energy window. This approximation is justified because A is a slowly varying
function of the angle of incidence and because the phase space density is sharply
peaked at a single point in the energy window. The VDF will indeed be peaked, both
because we are dealing with Gaussian quantities and because the Mach number of
the solar wind is very high.

The variation of the effective collecting area as a function of the angle of incidence
has been both derived analytically and determined through numerical simulations.
The two dominant effects are the varying transparency of the wires which comprise
the various grids in the cup, and blocking of the limiting aperture under extreme
angles of incidence. Therefore for the purposes of this section A(f) is taken as a
given, where 6 is the the angle of the incident particles relative to the cup normal.
Increasingly sophisticated methods for calculating # are now presented, starting with
the original key parameter analysis, the algorithm used for the isotropic alpha-proton
analysis [Aellig et al., 2001b], and ending with a new derivation for an anisotropic
VDF.

The original key parameter algorithm used a fixed value for A corresponding to
its maximum value of 33.8 cm? at normal incidence (§ = 0). The non-linear code
developed by Aellig for the isotropic analysis of the protons and alphas used the
angle between the cup orientation 7 and the bulk flow U (for this section U is in the
frame of the FC),

0 = cos ! if (2.26)
Ul

Consider the two example proton velocity distribution functions (a) and (b) shown
in Figure 2-7 in the rest frame of a Faraday Cup. V| is the speed perpendicular
to the cup normal, and V} is the speed along the normal axis. The shaded ellipses
represent the phase space density of the protons, with the rainbow coloring indicating
six thermal widths from the peak. Both VDF have the same bulk velocity U and
density n, but in (a) the distribution is isotropic with w = 30 km/s, while in (b)
it is anisotropic, with thermal speeds w, = 30 km/s and w; = 60 km/s aligned
with the field orientation indicated by the black arrow. The solid blue lines indicate
the 45° angle of of incidence to the FC at which the effective area begins to drop
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Figure 2-7: Two example distributions in velocity space. Left: An isotropic velocity
distribution function with a single thermal speed of 30 km/s. Right: An anisotropic
VDF with w; = 30 km/s and w = 60 km/s, and magnetic field orientation indicated
by the black arrow. In both images the cross identifies the maximum density of the
VDF, the solid red lines indicate the selected velocity window, the blue lines are the
nominal field of view of the instrument, the dashed line connects the origin to the
point in the VDF with maximum density, and the dotted-dashed line connects the
origin to the point in the energy window with the highest density. It is clear from
this example that for an anisotropic distribution we need a better way of determining
the angle of incidence than the historical technique.

rapidly, and the two solid red lines mark the upper and lower boundaries of the
energy window which we shall now consider. It is clear that for this example the
supersonic distributions fit entirely within the region of the energy window seen by
the cup. The crosses indicate the location of the bulk velocity of the plasma in each
panel, and the dashed lines show the angle determined by (2.26). The dotted-dashed
lines are the line from the origin to the actual location of the point in the energy
window which contributes the must to the total flux in this measurement.

In the case of the isotropic VDF in Figure 2-7, the difference between the two
angles is due to the fact the maximum current in the window does not necessarily
come from the same angle as the bulk flow. So the first correction, which works at
least for isotropic distributions, is to use the speed V, of the window instead of the
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component of the bulk speed normal to the cup, U,,
Vo
0 =cos ' —-. (2.27)
U]

In the case of the anisotropic distribution in (b) however, even (2.27) produces the
wrong angle. In fact, both (2.26) and (2.27) may be off by a great deal in the
case of large temperature anisotropies. The solution is to derive the location of the
point in phase space (%max,‘/;jmax,‘/;max) for a bi-Maxwellian distribution function
with the maximum density in a specified velocity window. Under the assumption
that AV,/V, < 1, V™ ~ V; so the problem is now two-dimensional. Start with a
differential form of the original anisotropic response equation (2.17),

dI  ANgq ﬁ_ﬁ)e—(vi/wiﬁ-vﬁ/wﬁ), (2.28)

357 h3/2q2
d3v 32wl w

where through (2.18) v, and v are functions of b and U. Since variations normal to
the cup are being neglected, ¢ - n is a constant. The collecting area A varies slowly
over the range in angles we are considering (in the analysis of a single ion spectrum we
will discard point at large angles of incidence). So defining R as the natural logarithm
of (2.28) and discarding the area term and any constants,

ar - o v
i X o + 5. (2.29)

R=—-1In

Now it is just a matter of finding the (V;*, V") which maximizes R for a given

~

U', b, wy, and wy. This is done by differentiating R with respect to V, and V, and
identifying the point (V" V%) where it vanishes. After some algebra,

bxbz(vz - Uz)(wL - wH)(wi + UJH)

max __ U:z; o
Yo bgwﬁ +(1-02)w?
2.30
o bybz(vz—Uz)(wl—w”)(wLwLw”) ( )
v Y brwi + (1 —b2)w? ’
and the angle of incidence used for the analysis of anisotropic distributions is
Vo
0 = cos * (2.31)

\/(‘/:'Cmax)2 + (‘/;/ma.x)2'

2.2.6 Moments of Faraday Cup Spectra

In Section 2.2.3 and Section 2.2.4 we explicitly derived the response of a FC instru-
ment to convected supersonic Maxwellian and bi-Maxwellian ion velocity distribu-
tions. Section 2.3 discusses the non-linear analysis technique, in which these models
are compared with observations to produce a set of ion parameters which give the
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best fit to the data. The current section presents a routine for estimating the bulk
properties in the solar wind by following the methods described in Section 1.2.6 for
collapsing the details of the VDF. This is called the moment analysis technique.
There are several good reasons to pursue the moment analysis as well as the non-
linear method: It is a good consistency check on both methods, and the moments
provide an easy visualization of the FC observations of the anisotropies. Additionally,
moments are a common method used by investigators to characterize the properties
of ions and electrons in the solar wind. As will be seen, the non-linear technique is
far more robust and provides much more information about the VDF. Generally the
moments are used because of their simplicity, but also because it is not possible in
general to produce the same analytic expressions developed in the previous sections
for all instrument types. Since there has been a great deal of discussion of differences
in solar wind parameters reported by different investigations, which generally involve
non-linear analysis of Faraday Cup data and moment analysis of another class of ion
instruments, electrostatic analyzers, it is important to apply both methods to the
same dataset. In Section 2.4.4 the two techniques are compared and the sources of
discrepancies are identified.

The current seen by a FC oriented in the direction 7(#, ¢) and scanning in the
window (V,, V, + AV) is the integration over (2.6),

dl = A(7/v)qu, f(T)d>. (2.32)

The FC measures the reduced distribution function (1.65), so with A representing
the appropriate value for A(%/v), which will be determined once we know the bulk
velocity of the protons, we write the differential current

dl = Aqu, f(v,)dv, (2.33)

as a one-dimensional problem. The most significant approximation of the moment
analysis technique is that f(v,) does not vary much over the width of the speed
window AV, so we may approximately write the total current Al as

AT ~ Aqu, f(v,)AV. (2.34)

The phase space density f; of the reduced distribution function along 7 for the 7*®
window at (V;, AV;) is then approximately

Al

= Awar

(2.35)
There are several problems with this treatment. First, f(v,) is a rapidly varying
function of v,, so the approximate integral will be in error. By simply normalizing
the current by AV; we have not weighted each part of the energy window correctly.
Additionally, we have assumed that all particles move with speed V; in determining
fi and we know that AV;/V; ~ 10%. Expecting errors on the order of several percent,
we can still proceed to calculate proton parameters. Assuming that the entire VDF
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is in the energy range swept out by the FC in this spectrum, the apparent proton
number density along this angle n(n) is just the sum of f; over all measurements in
this direction,

Al
n) = _. 2.36
"0 =3 sy (2.36)
In a similar manner to (1.62), the average speed of the distribution viewed in this
direction, U(n), is

Uh) = — > fivi (2.37)

n(n)

Following (1.63) and the fact that in the previous section it was shown that even
the bi-Maxwellian distribution will appear isotropic when viewed in a single arbitrary
direction, we write the effective thermal speed w(n),

. T N 2\ 1/2

n(n)

Typically the moments may be calculated along 20 to 30 of the angles in a spec-
trum, so there are many measurements of the projection U(7) = U - 7 of the bulk
velocity vector U into the cup frame. The projection effect is linear, so we have an
over-determined set of equations which can be inverted to determine the bulk veloc-
ity. The Singular Value Decomposition (SVD) method is used to determine U [Press
et al., 1999, §2.6].

Finally, the value of U is used to renormalize the apparent density n(n) by taking
into account the change of the effective area with angle of incidence, § = cos™* ﬁ-ﬁ/U,
and produce a corrected proton number density, n.,

ne(n) = i70)n(ﬁ) (2.39)
A
It is worth mentioning that the moment determinations were not dependent on the
actual number density along a given angle as long as A is not a noticeable function
of the speed of the energy window.

In the standard moment analysis the proton density and thermal speeds are given
by the average values of n.(n) and w(n) over all angles, and the deviation of these
quantities is an estimate of their uncertainty. The following section outlines the
method for determining the temperature anisotropy from w(n).

2.2.7 Temperature Anisotropy with Moments

It was shown that observations of a bi-Maxwellian VDF by a Faraday Cup appear
isotropic along a given angle (2.23). The simple form of the projected effective thermal
speed @ in (2.24) suggests that the thermal speeds w(n) calculated by the moment
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analysis may be used to determine the parallel and perpendicular thermal speeds.

The Sunward-facing component of a spectrum contains scans through the proton
VDF at 36 (2 cups x 18 angles) angles relative to the magnetic field. Starting with
w(n) and the average background magnetic field B., we fit

@) = /b~ 22w} + (1 — (b~ 2)2)w? (2.40)

to the observations with w, and w as free parameters.

If the moment and non-linear results agree this will be a good demonstration of
the robustness of the ability of a FC to measure anisotropies. There are two cases that
could create a disagreement between the results, but this difference could be useful
in highlighting intervals in the solar wind which merit further study. In certain cases,
especially in the high speed coronal solar wind, the proton VDF generally takes the
form of two separate bi-Maxwellian distributions, with a differential flow speed aligned
with the magnetic field. Sometimes the solar wind ions possess an appreciable heat
flux, which is also directed along the magnetic field. In both of these cases one would
expect the moment parallel thermal speed, w)mem to be greater than the non-linear
parallel thermal speed, w1

2.3 Outline of Analysis Procedure

This section is an outline of how the methods developed in Section 2.2 are applied
to the ion spectra. In Chapter 4 this routine is extended to include the analysis of
alpha particles. The procedure has also been modified to characterize the nature of
double streaming protons in the solar wind [Clack et al., 2002].

2.3.1 Preparation of a Single Ion Spectrum

The spacecraft spin rate and the number of energy windows in the spectrum are
used to calculate the duration of the observation, which on average is 92 seconds.
The set of three-second vector magnetic field measurements provided by the MFI
investigation which were made during this observation period are collected and the
average ambient magnetic field B, is calculated,

(2.41)

along with the deviation of the magnitude of the three-second field measurements,
AB, and the angular fluctuation of the direction of the field, Az over the course of
the ion spectrum,

5.}
Afp = Std. Dev [ cos™' —= b : (2.42)
| Bil
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The direction of the field normal, b, is then calculated in the frame of each of the
~ 1200 individual measurements in the spectrum through the transformation matrix
(2.3), under the assumption that the direction does not change much over the duration
of the observation. The validity of this assumption is assessed in Section 2.4.4.

2.3.2 Moment Analysis of the Proton Distribution

The moments described in Section 2.2.6 are calculated using data selected from each
angle in the spectrum. The data selection proceeds as follows independently for each
angle. The speed window V' with the largest current I, (and corresponding flux
fmax) is identified. All measurements with speeds within V/2 of V, fluxes greater
than 1% of fmax, and currents greater than 1-107'% A (compare to the instrumental
background current ~ 2 -107'3 A) are selected. The moments are then calculated
along every angle that has at least three selected measurements, yielding w(n), n(n),
and U(n). Application of the SVD algorithm to the U(n) produces the bulk velocity
U', which is then used to correct the number densities with a better estimate of the
effective area. Since the anisotropy of the protons is not known we cannot use (2.31).
The moments are calculated over the entire distribution function, so (2.27) is also not
well defined. The best that can be done is to use the bulk velocity and (2.26).

Figure 2-8 is a plot of n(n) as a function of the angle between n and the bulk
velocity U using the moments of a spectrum observed by Wind in the solar wind at
2032 UT on November 3, 1998. The number densities determined by each cup are
shown, after the correction to the effective area to reflect the flow angle relative to
the cup, with diamonds for FC1 and crosses for FC2. Note the large drop in the
calculated number density for angles greater than about 35°. The drop is due to
several effects including the rapid change in the effective area which begins near this
angle of incidence and the possibility that a portion of the proton VDF is no longer in
the field of view of the FC. The median value of the 20 largest densities is calculated,
and all measurements of n(n) within 5% of that value measured at angles less than 40°
from the bulk flow of the plasma are selected for subsequent analysis. The selected
points in the spectrum displayed in the figure are shown with solid symbols, while the
grey symbols indicate density measurements discarded as suspicious. The moment
number density is the average of the selected values.

The top panel of Figure 2-9 shows the moment determination of the proton ther-
mal speed w(n) as a function of the angle between the cup orientation n and the
average direction of the magnetic field b for the same spectrum. The points which
are shown as grey symbols correspond to the same points from the previous figure
which were discarded as having suspicious number densities. Note the remarkably
linear dependence of w(#)? on b - b, in agreement with the prediction of (2.24). The
over-plotted line is the result of a robust straight-line fit [Press et al., 1999, §15.7] of
(2.24) to the observations. The values of w, and w) which produced the best fit to
the observations are listed in the plot, along with the percent error of the fit (The
percent error is the best estimate of the quality of the fit possible because we do not
know the uncertainties of each moment determination of the thermal speed). For
this spectrum w) > w,. The bottom panel of Figure 2-9 is an example of a proton
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Figure 2-8: An example of the selection of FC angles n for a single spectrum to
be used for moment determination of density and thermal anisotropy. The number
densities determined by each cup are shown, with diamonds for FC1 and crosses
for FC2. All points indicated by grayed symbols are discarded from the subsequent
analysis because they have a flow angle of greater than 40° from the cup normal or
erroneous densities.
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spectrum with w; > w_.

The optimum limits for data selection and the fitting routine for the anisotropy
analysis of the moment data were developed by an undergraduate in the group, James
Tanabe [Tanabe et al., 2001], in parallel with my development of the non-linear anal-
ysis. Once we had generated plots of w(n)? vs b-b it was clear that the Faraday Cup
can indeed make robust measurements of the proton temperature anisotropy.

2.3.3 Initial Guess

An initial guess for the parameters of the proton distribution is needed for the selection
of data and as input to the fitting routine. The free parameters are U,, U, U,, w1, wy,
and n,. If the moment analysis succeeded and produced “reasonable” proton parame-
ters then it is used as the initial guess. A reasonable set of parameters is defined as be-
ing supersonic (U/w, > 1,U/w) > 1), with realistic velocity U, < 0,200 < U < 1200,
and density 0.01 < n, < 300.

If the moment analysis was not successful, or the moment parameters are judged
to be questionable, then the initial guess is formed directly from the raw currents. It
is assumed that the flow is radial, so U, and U, are both zero. The bulk speed U
is estimated as the speed of the window with the highest current, and U, = —U. A
mach number of 10 is assumed, so both w, and w are set to U/10. A fixed number
density of 10 protons cm ™2 is used because the fitting procedure is the least sensitive
to the initial guess of the density.

2.3.4 Selection of Proton Data

Individual measurements from the two cups are selected for comparison with the bi-
Maxwellian model based upon the initial guess proton parameters. It is important
that only currents due to the protons are included in this set, as the inclusion of
currents due to effects not accounted for in the model will contaminate the results of
the fit. From experience, contamination will effect the bulk velocities least, followed
by the number density. The thermal widths are the most sensitive to the inclusion of
observations which are inconsistent with the model. Measurement selection is dictated
by the four parameters ANGLEMAX, THERMALMAX, CURRMIN, and PEAKFRAC, which are
now described and justified. The final values of the parameters were determined in a
procedure described in Section 2.4.1 and their values are listed in Table 2.1

There are two contamination sources, physical and model /instrumental. Physical
factors include the presence of alpha particles, a second proton distribution, or a non-
negligable proton heat flux. To avoid substantial contamination from alpha particles
the parameter THERMALMAX is the maximum number of thermal widths above and
below the projected proton speed along each angle in which the selected data must
fall. The effective thermal speed is calculated along each angle based on the magnetic
field orientation and the current values of the parallel and perpendicular thermal
speeds. The effect of non-Maxwellian characteristics like heat flux are limited in
part by only taking measurements with currents greater than PEAKFRAC times the
maximum current in the spectrum.
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Figure 2-9: Scatter plot of observed thermal speed w(7) as a function of FC direction
relative to the field orientation n. Grey symbols indicate points discarded due to
suspicious densities. The lines are the best fit of (2.24) to the selected observations.
The data in the top panel are for the same spectrum shown in Figure 2-8 and have
w) > wy, whereas in the bottom panel w; > w .

74



600 =
vk
~. 500 F 3
€ 5 E
= = E
- 400F =
O = 3
() = 3
o = 3
Y E00E E
o0 E -
20 -
— 40E - 3
(%] = 3
& 30E ~ + 7 ~ =
S ) - - :
o 20F ~ + - =
o I AN - =
< 10f o+ N -F + 1 E
E o1 AN > 7 $$+ E

0E + F = £ T T E

—40 —20 0 20 40
Azimuthal Angle 8 [degrees]

Figure 2-10: Selecting measurements of anisotropic proton distribution for fitting to
bi-Maxwellian model. Top panel: Color shading indicates logarithmic distribution of
observed current as a function of speed window and azimuthal angle; crosses are loca-
tions of measurements and diamonds are the selected points; solid line is projection of
bulk velocity along each angle and dashed lines mark three thermal widths above and
below this projection. Bottom panel: Crosses indicates the angle of incidence of the
maximum flow for each measurement; Dashed horizontal line (red) is the maximum
angle ANGLEMAX for selection; Dashed curve is the angle between the cup and the bulk
flow; colored (blue) crosses are selected data.
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Model/instrumental effects are due to properties of the Faraday Cups which are
either not included in the derived models or limit the observations. Due to thermal
fluctuations in the amplification electronics there is a background current of approx-
imately 2 - 107'% A that the proton flux must exceed to be detected. In addition,
an intermittent increase in the background current along a single angle has been ob-
served in the past. It is small compared to ion signatures and has the same value at
each energy window along the single angle. The particular angle effected is also seen
to change with time, leading us to believe that sunlight is glinting off an object on the
spacecraft. Both of these effects are avoided by setting a minimum current CURRMIN
which observations must exceed.

The final issue is due to the effects of ions at large angles of incidence to the cup.
Several of the derivations fail for large angles of incidence: The initial assumptions
listed in Section 2.2.3 for deriving the response functions required that the protons
were supersonic and entirely in the field-of-view of the cup, thus allowing us to extend
the integration in velocity space to an infinite slab; The derivation in Section 2.2.5 of
the appropriate effective area was based on the assumption that the protons which
contribute most to the measured current flow from an angle where the effective area
varies slowly. In addition, at large angles the beam of particles which pass through the
limiting aperture and illuminate the collecting plates may in part miss the collectors.
As the modulator voltages alternates between the two edges of the window, the beam
will partly walk on and off the collectors. This creates an artificial signal which is
modulated at 200 Hz and is included in the final measured current. This feature is
most often seen at very low voltages and large angles. Data which may experience
any of these problems are discarded by setting a maximum angle ANGLEMAX to the
cup normal. This limit is applied both to the angle between the cup normal and the
bulk velocity and to the angle determined by (2.31) for the optimum effective area.

The main aspects of the point selection algorithm are illiustrated in Figure 2-10 for
a model proton spectrum. The proton VDEF is bi-Maxwellian, flowing radially at —350
km/s with b in the ecliptic, —7° from the Sun-Earth line and w; = 2w). The color
shading is the logarithm of the observed current as a function of speed window and
the azimuth angle of the cup. The crosses mark the location of every measurement
in this spectrum and the diamonds are the selected observations. The solid blue line
is the projection of the proton bulk speed as a function of the azimuth angle. The
two dashed blue lines indicate the upper and lower speed limits with THERMALMAX set
to 3. Note the variation in these bounds as a function of angle due to the varying
effective thermal speed. The bottom panel shows the angle to the maximum flux as
determined by (2.31) for each measurement as crosses. The dashed black curve is the
angle between the cup and the bulk flow of the protons. The horizontal red dashed
line is ANGLEMAX, which has been set to 38°. Selected points are colored blue.

A minimum of forty measurements of the proton distribution are required for the
analysis to proceed on a given spectrum. Typically at least 200 points were selected.

76



2.3.5 Non-Linear Fit of Model to Observations

With the magnetic field orientation specified by the MFI field observations, there are
six free parameters in the bi-Maxwellian proton model: U, w,w), and n. Define a
x? merit function,

gNj [I it m“] , (2.43)

where for each measurement ¢ of the total N observations there is an observed cur-
rent ™% the current predicted by the model, I™°4 and the uncertainty o; of that
measurement. The best-fit values of the parameters are determined by minimizing
2. We employ the Levenberg-Marquardt non-linear least-squares method, which is a
combination of the inverse-Hessian and steepest descent methods [Press et al., 1999,
§15.5]. In addition to the best-fit parameters and the final minimum value of x?, a co-
variance matrix is calculated and inverted to yield one-o estimates of the uncertainty
of each parameter. The final value of x?, combined with the number of measurements
used in the fit, will indicate how well the bi-Maxwellian model describes solar wind
protons.

If the Faraday Cup counted individual particles then the uncertainties o; in (2.43)
would simply be proportional to the square root of the total number of particles
detected. The uncertainty in the currents measured by the a FC is actually limited
by the digitization of the observed currents are they are telemetered back to Earth.
For the Wind cups the resolution of the telemetered currents is 1%. The weighting
factor is set to the larger of one percent of the measured current or the thermal
background current,

= (0.01- 1™ > 4.1073) ", (2.44)

Note that the uncertainty of a Faraday Cup current measurement of N particles is
not proportional to v/ N, but instead is fixed at 0.01- N. It is not a great loss that the
uncertainty due to the digitization is larger than simple /N statistics because the
approximations we have used in deriving the instrument response introduce errors
less than but near that same level.

2.4 Results: Proton Parameters, Uncertainty
Propagation and Analysis

The original analysis code written to analyze Wind FC spectra was extended to in-
corporate the methods described in the previous section. The procedure is completely
automated and processes a single day at a time, saving the results in a binary file. For
each measurement the time, spacecraft location, magnetic field averages and fluctu-
ations, results from the moment analysis, initial guess, best-fit parameters and their
uncertainties, number of measurements selected for fitting, and the minimum value
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Figure 2-11: Selection of an interval in 1998 for the optimization of the analysis
code. Shown from top to bottom are the bulk speed, thermal speed, number density,
magnetic field, and location of the spacecraft (245 blue; ygee red).

of x? are recorded.

On average it takes ten minutes to analyze one day of observations, so our com-
puter system can process the entire mission in approximately one week. Section 2.4.1
demonstrates how the small computing time allows us to optimize the data selection
parameters which were described in Section 2.3.4.

The overall convergence of the non-linear analysis and the distribution of values
of x? are reviewed in Section 2.4.2. In the subsequent sections the uncertainties of
the proton parameters are calculated, and any interesting dependencies are explored.

2.4.1 Optimizing the Analysis

In order to determine the best values for the two analysis parameters THERMALMAX
and ANGLEMAX an interval of obeservations which cover a broad range of interplan-
etary conditions was selected and processed repeatedly. The “optimum” values of
THERMALMAX and ANGLEMAX produce the best overall minimum average x?/d.o.f. and
anisotropic thermal speed uncertainties, oy, and oy, .

Twenty days in 1998, from August 8 through August 28, containing 18, 200 spec-
tra, were selected for this procedure. A summary of the bulk speed, average thermal
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Parameter ‘ Value ‘ Description ‘
ANGLEMAX 28° The maximum angle the bulk flow vector and the point in
phase space making the greatest contribution to the
current in this window may make

THERMALMAX 3 x 117(1;) Number of thermal widths from the peak using projected
effective thermal speed at this angle

CURRMIN 1 x 107"2[A] Minimum current

PEAKFRAC 5x 1072 Currents must be greater than this fraction of the peak
current seen in the entire spectrum

ANGLEMOM 28° Maximum angle from peak for moment analysis

Table 2.1: The final values of the free parameters used for the anisotropic analysis of
protons.

speed, number density, magnetic field strength, and spacecraft location during this
period is shown in Figure 2-11. The period was selected because it contained high and
low speed solar wind, an encounter with the Earth’s bow shock, and several notable
interplanetary shocks, especially the August 28 event.

The entire period of selected observations was processed four hundred times, using
twenty values of THERMALMAX spaced evenly between 1.0 and 3.4, and twenty values
of ANGLEMAX ranging from 10° to 50°. The median values for x*/d.o.f., o1, and oy
were calculated. The dependence of x?/d.o.f. and o, on the choice of THERMALMAX
and ANGLEMAX are shown as contour plots in Figure 2-12. For ANGLEMAX less than 18°
the model fit the selected observations very well, but the resulting parameters were
erratic, suggesting that there was insufficient data to constrain the model successfully.
Focusing on the contour of x?/d.o.f., there are two clear trends. First the median
value of x?/d.o.f. is a sharply decreasing function of THERMALMAX until approximately
2.5 thermal widths of data are selected. Second, x*/d.o.f. reaches its minimum value
for ANGLEMAX greater than about 25°, and decreases slowly afterwards. Examination
of several individual events suggested that this slow decrease in x?/d.o.f. w